Skip to main content

Underfitting, Overfitting or Bias and Variance

In Machine Learning, we often hear the problems of underfitting, overfitting, or bias and variance.
What are they and how to "diagnose" the problem of your models?

Underfitting / high bias

  • Symptom: Your training error is high
  • Problem: Your model is not able to capture the underlying structures/relationships in your training data
  • Solution: Make your model more powerful (e.g., bigger nets, longer training time, more iterations)

Overfitting / high variance

  • Symptom: Errors on your development set are much higher than your training errors
  • Problem: Your model is "too fit" to the training data
  • Solution: Use more training data (or data augmentation - e.g., flip/rotate images to have more training samples), add regularization to the model (or some techniques like drop-out, early stopping, etc.)

Comments

Popular posts from this blog

Pytorch and Keras cheat sheets

Sigmoid, tanh, ReLU functions. What are they and when to use which?

If you are working on Deep Learning or Machine Learning in general, you have heard of these three functions quite frequently. We know that they can all be used as activation functions in neural networks. But what are these functions and why do people use for example ReLU in this part, sigmoid in another part and so on? Here is a friendly introduction to these functions and a brief explanation of when to use which. Sigmoid function Output from 0 to 1 Exponential computation (hence, slow) Is usually used for binary classification (when output is 0 or 1) Almost never used (e.g., tanh is a better option) Tanh function A rescaled logistic sigmoid function (center at 0) Exponential computation Works better than sigmoid ReLU function (Rectified Linear Unit) and its variants Faster to compute Often used as default for activation function in hidden layers ReLU is a simple model which gives 0 value to all W*x + b < 0. The importance is that it introduces t...

Python Tkinter: Changing background images using key press

Let's write a simple Python application that changes its background image everytime you click on it. Here is a short code that helps you do that: import os, sys import Tkinter import Image, ImageTk def key(event): print "pressed", repr(event.char) event.widget.quit() root = Tkinter.Tk() root.bind_all(' ', key) root.geometry('+%d+%d' % (100,100)) dirlist = os.listdir('.') old_label_image = None for f in dirlist: try: image1 = Image.open(f) root.geometry('%dx%d' % (image1.size[0],image1.size[1])) tkpi = ImageTk.PhotoImage(image1) label_image = Tkinter.Label(root, image=tkpi) label_image.place(x=0,y=0,width=image1.size[0],height=image1.size[1]) root.title(f) if old_label_image is not None: old_label_image.destroy() old_label_image = label_image root.mainloop() # wait until user clicks the window except Exception, e: # Skip a...