Skip to main content

Sigmoid, tanh, ReLU functions. What are they and when to use which?

If you are working on Deep Learning or Machine Learning in general, you have heard of these three functions quite frequently. We know that they can all be used as activation functions in neural networks. But what are these functions and why do people use for example ReLU in this part, sigmoid in another part and so on? Here is a friendly introduction to these functions and a brief explanation of when to use which.

Sigmoid function


  • Output from 0 to 1
  • Exponential computation (hence, slow)
  • Is usually used for binary classification (when output is 0 or 1)
  • Almost never used (e.g., tanh is a better option)

Tanh function


  • A rescaled logistic sigmoid function (center at 0)
  • Exponential computation
  • Works better than sigmoid

ReLU function (Rectified Linear Unit) and its variants


  • Faster to compute
  • Often used as default for activation function in hidden layers

ReLU is a simple model which gives 0 value to all W*x + b < 0. The importance is that it introduces to our network the non-linearity, which is important for activations.



Comments

Popular posts from this blog

Pytorch and Keras cheat sheets

Python Tkinter: Changing background images using key press

Let's write a simple Python application that changes its background image everytime you click on it. Here is a short code that helps you do that: import os, sys import Tkinter import Image, ImageTk def key(event): print "pressed", repr(event.char) event.widget.quit() root = Tkinter.Tk() root.bind_all(' ', key) root.geometry('+%d+%d' % (100,100)) dirlist = os.listdir('.') old_label_image = None for f in dirlist: try: image1 = Image.open(f) root.geometry('%dx%d' % (image1.size[0],image1.size[1])) tkpi = ImageTk.PhotoImage(image1) label_image = Tkinter.Label(root, image=tkpi) label_image.place(x=0,y=0,width=image1.size[0],height=image1.size[1]) root.title(f) if old_label_image is not None: old_label_image.destroy() old_label_image = label_image root.mainloop() # wait until user clicks the window except Exception, e: # Skip a...

Word embeddings

In this post, we are going to talk about word embedding (or word vector), which is how we represent words in NLP. Word embedding is used in many higher-level applications such as sentiment analysis, Q&A, etc. Let's have a look at the most currently widely used models. One-hot vector is a vector of size V, with V is the vocabulary size. It has value 1 in one position (represents the value of this word "appears") and 0 in all other positions. [0, 0, ... 1, .., 0] This is usually used as the input of a word2vec model. It is just operating as a lookup table. So this one-hot encoding treats words as independent units. In fact, we want to find the "similarity" between words for many other higher-level tasks such as document classification, Q&A, etc. The idea is: To capture the meaning of a word, we look at the words that frequently appear close-by this word. Let's have a look at some state-of-the-art architectures that give us the results of word ve...